Brackets & Equations

Review: Breaking Brackets

You already know how to break a single bracket and collect like terms:

e.g. i)
$$3(2x-5) \rightarrow 6x-15$$

i)
$$3(2x-5) \rightarrow 6x-15$$
 and ii) $-2(5y-3) \rightarrow -10y+6$

Recall the rules of signs:

+	×	+	\rightarrow	+
+	×	ı	\rightarrow	1
_	×	+	\rightarrow	1
-	×	1	\rightarrow	+

We had the rule: **SAME SIGN PLUS**.

A plus times a plus makes a plus, and a minus times a minus makes a plus – different signs make a minus.

Review: Collecting like terms

We can deal with more complicated expressions as follows:

$$3(5x-3)-2(4x+1) \rightarrow 15x-9-8x-2$$
 we can then collect like terms (tidy up) $\rightarrow 7x-11$

We can also tidy up expressions such as:

$$x(2x+1)+3(4x-3) \rightarrow 2x^2+x+12x-9$$
 which will tidy up (simplify) to: $\rightarrow 2x^2+13x-9$

We can also tidy up expressions such as:

$$3a^2b + 5ab + 3ab^2 - 2ab - a^2b + 2ab^2$$

noting that the like terms have to have the same powers (indices) $\rightarrow 2a^2b + 3ab + 5ab^2$

You should note that: pq is the same as qp. The order in which you multiply does not matter.

So:
$$3pq + 2q^2 - qp - p^2$$
 will simplify to: $\rightarrow 2pq + 2q^2 - p^2$

Review: Evaluating expressions

Expressions are simply rules indicating how to combine the numbers that the letters represent.

Examples: if x = 2, y = -3, z = 5

then i)
$$x+y \to 2+(-3) \to 2-3 \to -1$$

also ii)
$$\frac{x-y}{z} \to \frac{2-(-3)}{5} \to \frac{5}{5} \to 1$$

and iii)
$$x^2 - y^2 \rightarrow 2^2 - (-3)^2 \rightarrow 4 - (9) \rightarrow -5$$

Brackets & Equations

Review: Solving equations

We can solve equations by thinking in terms of a balance.

Whatever you do to one side – you do to the other.

The aim is to get the variable (letter) on one side and the numbers on the other.

- You can add the same number to, or subtract the same number from both sides.
- You can multiply or divide both sides by the same number.
- You can even square each side or take the square root of each side.

e.g.
$$3x+5=17$$

 $3x=12$ (subtracting 5 from each side)
 $x=4$ (divide each side by 3)

Collect the letters where there are the MOST of them, so you do not get negative letters.

e.g.
$$4x-3=9x+22$$

 $-3=5x+22$ (subtracting 4x from each side)
 $-25=5x$ (subtracting 22 from each side)
 $-5=x$ (divide each side by 5)

By putting together all the above, we can solve what appear to be quite complicated equations:

e.g.
$$3(2x-3)+4(3x-1)=2(x+5)+9$$

 $6x-9+12x-4=2x+10+9$ (by breaking the brackets)
 $18x-13=2x+19$ (by tidying up each side)
 $18x-2x=19+13$ (take 2x from each side; add 13 to each side)
 $16x=32$ (simplify each side)
 $x=2$ (divide each side by 16)

We can even deal with equations like this, by simply following the rules.

e.g.
$$x(2x+3) = 2(x^2-3)$$

 $2x^2 + 3x = 2x^2 - 6$ (by breaking the brackets)
 $3x = -6$ (subtracting $2x^2$ from each side)
 $x = -2$ (divide each side by 3)

Review: Solving inequalities

We solve inequalities by treating them exactly the same as we would an equation

However, you should take care

 $4x - 3 \ge 13$

e.g.

- if you **multiply** or **divide** by a **NEGATIVE** number, you **MUST** change the **direction** of the inequality sign.

$$4x \ge 16$$
 (adding 3 to each side)
 $x \ge 4$ (divide each side by 4)

e.g. $2-5x \le 17$
 $-5x \le 15$ (subtract 2 from each side)
 $x \ge -3$ (divide each side by -5 ; note **change** in **direction** of inequality sign)

Brackets & Equations

Breaking Pairs of Brackets - FOIL

We can break a single bracket – but what about two brackets multiplied together.

e.g. (x+3)(x+4) First we need to imagine what this might represent. It is two numbers multiplied together. It could be an area.

Imagine a garden of length: x + 3 and width x + 4 Then the above expression would represent the area.

We could then work out the area of each section.

	X	4
X	x²	4 <i>x</i>
3	3 <i>x</i>	12

This is also known as a **Multiplication** table

and by adding the individual areas we would get: $x^2 + 4x + 3x + 12$

so in fact; $(x+3)(x+4) \rightarrow x^2 + 4x + 3x + 12$ which would simplify to: $x^2 + 7x + 12$

Now look at the parts of the garden which make up: $x^2 + 4x + 3x + 12$

The x^2 term comes from the x in each bracket – the **First** term

The 4x term comes from the x in the first bracket and the 4 in the second bracket – the Outer terms

The 3x term comes from the 3 in the first bracket and the x in the second bracket – the Inner terms

The 12 term comes from the 3 in the first bracket and the 4 in the second bracket – the Last terms

FOIL

is a useful way of remembering the order in which to break a pair of brackets

Breaking Pairs of Brackets - FOIL ... continued

This method can be used in many different cases:

e.g.
$$(2x-1)(x+3) \rightarrow 2x^2+6x-x-3 \rightarrow 2x^2+5x-3$$

How do we deal with this $(x+3)^2$?

 $(x+3)^2$ – if we think about what it means, then **squared** just means multiplied by itself.

So,
$$(x+3)^2 \rightarrow (x+3)(x+3)$$

and we know how to break this pair of brackets using FOIL.

Hence,
$$(x+3)^2 \rightarrow (x+3)(x+3) \rightarrow x^2+3x+3x+9 \rightarrow x^2+6x+9$$

Two useful squares to be aware of are:

$$(a+b)^{2} \rightarrow (a+b)(a+b) \rightarrow a^{2}+ab+ab+b^{2} \rightarrow a^{2}+2ab+b^{2}$$
$$(a-b)^{2} \rightarrow (a-b)(a-b) \rightarrow a^{2}-ab-ab+b^{2} \rightarrow a^{2}-2ab+b^{2}$$

Equations with brackets

Finally, we can extend this to equations with pairs of brackets:

e.g.
$$(y-3)^2 = y(y+3)$$

 $(y-3)(y-3) = y(y+3)$ (write out the square in full)
 $y^2 - 3y - 3y + 9 = y^2 + 3y$ (Use FOIL on the Left hand side, and break the brackets on the right)
 $y^2 - 6y + 9 = y^2 + 3y$ (simplify)
 $-6y + 9 = 3y$ (subtract y^2 from both sides)
 $9 = 9y$ (add 6y to both sides)
 $1 = y$ (Divide both sides by 9)

SUMMARY:

- 1. Use of Signs Same Sign Plus
- 2. **Simplify** wherever possible
- 3. Use **FOIL** to break a pair of brackets
- 4. Noting that **squared** means multiplied by itself.
- 5. Remember that $2m \times 2m \rightarrow 2 \times m \times 2 \times m \rightarrow 4m^2$
- 6. Two useful squares $(a+b)^2 \rightarrow a^2 + 2ab + b^2$ $(a-b)^2 \rightarrow a^2 - 2ab + b^2$